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1 Introduction

People might ask how it is that they can see objects
depth, meaning that human vision is ‘‘three dimensiona
The most common reply is that humans use the differe
between the images in our left and right eyes to jud
depth. Many techniques have been proposed to simu
human vision with machines and to find those points t
human eyes seem to use as references to build more
plex models. If a machine is able to see well, then we te
to call it intelligent. The area of artificial intelligence~AI !
uses computers and their computational ideas and met
to study intelligence. AI offers a new perspective and a n
methodology to make computers ‘‘intelligent.’’ Machin
vision, however, must address many problems:

1. What information should be extracted?

2. How should this information be extracted?

3. How should this information be represented?

4. How should this information be used?

This paper intends to present solutions to some of the p
lems mentioned above. We address the problem of
intermediate-level visual processing and derive a rob
and efficient method that processes a raw image signal
several layers of abstraction to produce meaningful in
mediate level structures. In addition, both the primitive fe
tures and the aggregated structures are integrated in
symbolic representation.

2 Multiresolution Edge Detector

Our goal is to analyze light intensity data from given inp
images to describe models in the original scene. To s
plify the process, we only consider trihedral objects, i.
solid polyhedra bounded by planar faces where exa
three faces meet at each vertex.
158 Opt. Eng. 37(1) 158–165 (January 1998) 0091-3286/98/$10.
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2.1 Features

Features, such as edges, lines, points, and regions, mu
previously extracted to generate object hypotheses fro
symbolic image description. The feature extraction pro
dure usually uses a local operator and does not use
specific shape information or contextual scene knowled
This process is often referred to as~low-level! image seg-
mentation. The problem of image segmentation is still u
solved, mainly because it is not independent of the ove
task and there is no guarantee that the object parts~e.g.,
boundaries! are completely visible.

2.2 Edge Maps

A better approach is to derive a partial symbolic repres
tation as opposed to a complete image segmentation.
process would extract points, edges, lines, and regions f
gray-level and color images. Some operators are based
simple and isolated model feature such as an ideal
edge1 or a constant intensity region.2 However, the assump
tion that image features appear in isolation and that t
belong to a single class is often invalid. We can see t
edges, lines, and points often interact with each ot
through composite edges or at image junctions.3

2.3 Edge Detection Methods

Intensity discontinuities are considered one of the prim
image features that enable a scene to be segmented
meaningful parts. Many methods have been defined to s
ably detect edge maps and some of them~the ones we used
as inspiration for our multiresolution method! are briefly
described here.

2.3.1 Masks

Point and line detection can be implemented by us
simple masks that detect discontinuities, which is wh
these features are assumed to be located.4,5
00 © 1998 Society of Photo-Optical Instrumentation Engineers
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2.3.2 First and second derivatives

We would like to take advantage of the fact that brightn
changes more rapidly in the edges than in other pla
Such behavior can be described in a better way with
first and second derivatives. The first derivative of brig
ness has a maximum in the edge, and the second deriv
has a zero in that maximum. The generalization of the fi
derivative to 2-D is given by the gradient~¹f!.

2.3.3 Gaussian filters

Some other methods find edges in smoothed and
sampled images rather than the original images to av
noise features and unreliable edges. The first edge-dete
method using a Gaussian-shaped low-pass filter is
scribed as follows:6

1. Filter signal using a Gaussian-shaped function:

h~x,y!5exp@2~x21y2!/2ps2#,

H~u,v !52p2s2 exp@2ps2~u21v2!/2#,

where s determines the cutoff frequency, with
largers corresponding to a lower cutoff frequency

2. Use an edge detection method.

2.3.4 Combining ideas

The previously described methods, as well as many o
edge detection methods, work well for the specific ca
and problems they were created to solve. We usually b
our method on a specific edge model. A more compl
approach would deal with several models under differ
situations to give better and more complete edge maps
the next sections, we show how wavelets can be use
acquire a multiresolution representation of the input sign
how to automatically apply a smoothing procedure by
fining a smoothing function~such as a Gaussian!, and how
to calculate the first and second derivatives to calculate
gradients and represent edge pixels through several le
of resolution.

2.4 Wavelets

It has become impossible to give the definition of
wavelet.7 Basically, definitions become obsolete from o
day to the next due to fast growth of the research field
the high rate at which contributions are made. A very vag
definition, but one that at least includes three of the m
features of wavelets is: ‘‘wavelets are building blocks th
can quickly decorrelate data.’’

Let us analyze these three properties. First, wavelets
building blocks for general data sets or functions. In ma
ematical terms, we say that they form a basis or, m
generally, a frame. By this we mean that each element
general class can be written in a stable way as a lin
combination of the wavelets. If the wavelets are denoted
c i and the coefficients byg i , a general functionf can be
written as

f 5(
i
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Second, wavelets have the power to decorrelate. T
means that the representation of the data in terms of
wavelet coefficientsg i is somehow more ‘‘compact’’ than
the original representation. In information-theory terms,
say that the entropy in the wavelet representation is sma
than the original representation, and in approximatio
theory terms, we say that we want to get an accurate
proximation of f by only using a small fraction of the
wavelet coefficients.

This decorrelation is obtained by constructing wavel
that already resemble the data we want to represent
other words, we would like the wavelets to have the sa
correlation structure as the data. For instance, most sig
we encounter every day have correlation in both space
frequency, i.e., samples that are spatially close are m
more correlated that ones that are far apart, and frequen
often occur in bands. If we want to analyze and repres
such signals, we need wavelets that are local in space
frequency. Typically, this is achieved by building wavele
that have compact support~localization in space!, that are
smooth~decay toward high frequencies!, and that have van-
ishing moments~decay toward low frequencies!.

Third and last, we want to quickly find the wavelet re
resentation of the data, i.e., we want to switch between
original representation of the data and its wavelet repres
tation in a time proportional to the size of the data@some-
thing that in algorithmic-complexity terms is known a
O(n)#. The fast decorrelation power of wavelets is the k
to applications such as data compression, fast data tr
mission, noise cancellation, signal recovery, and fast
merical algorithms.

2.5 Lifting Scheme

The basic idea behind lifting is that it provides a simp
relationship between all resolution analyses that share
same low-pass filter or high-pass filter.8 The low-pass filter
provides the coefficients of the refinement relation, wh
entirely determines the scaling function. The high-pass
ter provides the coefficients that enable the linear comb
tion of several scaling functions to find the wavelet. Liftin
can be used to effortlessly custom-design wavelets. O
for example, could derive a family of biorthogonal wav
lets associated to the interpolating Deslauriers-Dubuc s
ing functions9 using lifting.10

The ‘‘lifting scheme’’ 7,8,10–15is a new approach for the
construction of families of wavelets that are independen
the Fourier transform. Constructing wavelets using lifti
consists of three simple phases or stages: the first
SPLITS the data into two subsets, even and odd, the sec
one calculates the wavelet coefficients~high pass! as the
failure to PREDICT the odd set based on the even, a
finally the third one UPDATES the even set using t
wavelet coefficients to compute the scaling function co
ficients ~low pass!. The PREDICT phase ensures polyn
mial cancellation in the high pass~vanishing moments of
the dual wavelet! and the UPDATE phase ensures pres
vation of moments in the low pass~vanishing moments of
the primal wavelet!.

The advantages of lifting are numerous:
159Optical Engineering, Vol. 37 No. 1, January 1998
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Fernández and Huntsberger: Wavelet-based system for recognition and labeling . . .
1. Lifting allows for an in-place implementation of th
fast wavelet transform, a feature similar to the fa
Fourier transform.7

2. It is particularly easy to build wavelet transforms th
map integers to integers using lifting.15 These trans-
forms are particularly useful for hardware impleme
tation and for lossless image coding.

3. Lifting enables the construction of wavelets entire
in the spatial domain, i.e., without making use of t
Fourier transform. This means that it can be used
build wavelets that are not necessarily translates
dilates of one function. These wavelets are known
‘‘second-generation wavelets’’ and typical exampl
are wavelets adjusted to weight functions, irregu
samples,14 the sphere,13 or manifolds. This also en
ables an easy way to introduce wavelets, which
particularly useful for people without a strong mat
ematical background.14

4. Every transform built with lifting is immediately in
vertible where, the inverse transform has exactly
same computational complexity as the forwa
transform.11,16

5. Lifting allows for adaptive wavelet transforms, i.e
one can start the analysis of a function from t
coarsest levels and then build the finer levels by
fining only in the areas of interest.13

6. Lifting exposes the parallelism inherent in a wave
transform. All operations within one lifting step ca
be done entirely in parallel. The order of the liftin
operations in the only part required to be sequent

For our particular problem, feature extraction, we us
wavelets generated by LiftPack,11 which is a C library of
biorthogonal wavelets withn vanishing moments. Refer t
Ref. 11 for more details about LiftPack and the impleme
tation of the lifting scheme.

2.6 Multiresolution Edge Representation

Our model of a multiresolution edge representation is ba
on the local maxima of the wavelet transform. The wave
transform of a signal is a multiresolution decompositi
that is well localized in space and frequency.17 The multi-
resolution edge representation of signals was first descr
by Mallat18 and has evolved in two forms, based on mu
resolution zero-crossings and multiresolution gradi
maxima, respectively. The latter, which is used in this p
per, was developed by Mallat and Zhong.19 We give only a
brief review of the multiresolution representation for 2-
images. For a detailed description, see Refs. 19 and 20

Consider two oriented wavelets that are constructed
the partial derivatives of a smoothing functionw(x,y):

c1~x,y!5
]

]x
w~x,y! and c2~x,y!5

]

]y
w~x,y!. ~1!

Assume an image is a differentiable 2-D functionf (x,y)
PL2(R2). The associated 2-D dyadic wavelet transfo
~WT! of an imagef at scale 2j , at position (x,y) and in
orientationk is defined as
160 Optical Engineering, Vol. 37 No. 1, January 1998
d

W 2 j
k f ~x,y!5 f * c2 j

k
~x,y!, k51,2, ~2!

with c2 j
k (x,y)5222 jck(22 j x,22 j y).

The WT defined by Eq.~2! produces a sequence of ve
tor fields indexed by level of resolution. They are the g
dient of f (x,y) smoothed byw(x,y) at dyadic scales, or the
multiresolution gradients:

¹2 j f ~x,y![@W 2 j
1 f ~x,y!, W 2 j

2 f ~x,y!#

5
1

22 j ¹~w2 j* f !~x,y!

5
1

22 j ¹ f * w2 j~x,y!. ~3!

The multiresolution gradient representation off is com-
plete, because the WT defined by Eq.~2! is invertible. For
a multiresolution gradient representation over a finite nu
ber of scales, 0< j <J, it is also necessary to includ
S2 j f (x,y), which is the smoothed version off at the coars-
est scale, 2J.

The multiresolution edge representation is built on t
multiresolution gradient representation. For this purpose
is convenient to represent the multiresolution gradient
magnitude-angle pairs,r2 j f (x,y),u2 j f (x,y), where the
magnituder2 j f (x,y) and angleu2 j f (x,y) are defined by

r2 j f ~x,y!5$@W 2 j
1 f ~x,y!#21@W 2 j

2 f ~x,y!#2%1/2 ~4!

and

u2 j f ~x,y!5arctanFW 2 j
2 f ~x,y!

W 2 j
1 f ~x,y!

G . ~5!

A point (x,y) is considered a multiresolution edge poi
at scale 2j if the magnitude of the gradient,r2 j f , attains a
local maximum there along the gradient directionu2 j f . For
each scale 2j , we collect the edge points along with th
corresponding values of the gradient~i.e., the wavelet
transform values! at that scale. The resulting local gradie
maxima set at scale 2j is then given by

A~ f !5 H @~xi ,yi !;¹2 j f ~xi ,yi !#

3Ur2 j f ~xi ,yi ! has local maximum at
~xi ,yi ! along the directionu2 j f ~xi ,yi !

J . ~6!

For aJ-level 2-D WT, the collection

$S2 j f ~x,y!,@A2 j~ f !#1< j <J% ~7!

is called a multiresolution edge representation of the im
f (x,y).

This method enables us to extract an object’s featu
through different resolutions. However, we want to get su
sampled versions of the original image for further calcu
tions at different resolutions. The multiresolution edge re
resentation proposed by Mallat does not subsample thro
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different scales. We use instead the fast lifted wave
transform~FLWT! to adapt the multiresolution edge repr
sentation to our needs.

2.7 Noise Estimation

The multiresolution edge maps obtained with the lo
maxima operator described consist of both noise and
image features. Therefore, a thresholding operation mus
applied to the edge maps to separate the noise features
the true image features. This threshold is often set manu
by a trial-and-error procedure to produce a ‘‘visua
clean’’ edge representation. It is, however, necessary
know the noise characteristics to determine thresh
levels.21

It has been demonstrated22,23 that the edge map thresh
old can be derived from the distribution of gradient mag
tudes in the image. A method derives an automatic e
detection threshold by estimating the noise in the ima
Let us establish that the original distribution of the gradie
magnitudes consists of two components: a noise and a
nal component. Since noise in images is usually addit
white Gaussian noise appears as the most prevalent m
to use. If we assume white Gaussian noise, the grad
magnitudes of the noise are Rayleigh distributed. Due
the fact that the gradient magnitudes of the signal com
nent are often considerably stronger than the ones from
noise component, the signal without the noise affe
mainly the tail of the distribution. We want, therefore,
estimate the peak of the Rayleigh distribution from t
original distribution. It can be estimated by computing t
mode of the original distribution~Ref. 24, Chap. 13.3!.
Given an estimatej of the peak of the Rayleigh distribu
tion, the edge detection thresholdt can be chosen to ex
clude a certain amount of edge pixels due to noise.23 To
remove noise edges with a risk probability ofs, an edge
detection threshold

t5j~22 ln s!1/2 ~8!

should be used. We use a probability risk ofs50.1% or
equivalently a thresholdt'3.7169j for all experiments
~unless we say otherwise!. This threshold will enable us to
remove noise features. If weak and unreliable edges sh
also be removed, a higher threshold value must be sele
At this time, however, we do not have enough informati
to decide which features are or are not relevant. This p
cess is discussed later

3 Multiresolution Edgel Aggregation

Intensity discontinuities are considered one of the prim
image features that enable a scene to be segmented
meaningful parts. Many methods have been defined to s
ably detect edge maps. However, these edge maps
deficiencies: fragmentation, gaps at junctions, and clu
and faulty connections. Also, object boundaries are
guaranteed to be contrast defined. Additional processin
needed to obtain more complete and unambiguous bo
ary definitions that account for more global relationsh
among image features.25
e
m
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el
t

e
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to
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e
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3.1 Contour Graph

Edge detectors based on a local operator extract image
tures in a local neighborhood without using specific sha
information or scene knowledge. They are unorganized
represent isolated image events. The feature extraction
cedure must also organize these local features to a m
complete symbolic image description. In our case, the e
detector produces an edge map in which each pixel con
of its local strength and orientation. Thus, the low-lev
organization consists of linking edge pixels to create
more complete contour representation—a contour gra
The more specific task of grouping these extracted conto
to complete objects is not integrated in the work of th
paper, but it is mentioned that coplanar grouping and s
ment stereo matching can be used to build full 3-D rep
sentations of the objects. Once we have found points
belong to an edge, we must link them together to find
actual edge. We use the method described in Ref. 3 fo
unique way of dealing with different object features in t
same algorithm.

3.2 Key Points

We have shown how to extract 1-D features such as ed
line points. However, even though those points might fo
meaningful boundaries, we do not really know how t
points are related to each other and to which bounda
they belong. We could use a linking procedure with t
gradient magnitude and orientation to construct contour
edges, but these 2-D features alone are not enough to
a complete symbolic description of an object. In addition
edges, other 2-D image features, such as junctions, corn
and line-ends represent another class of important infor
tion that can serve as the definition of object boundar
First, they help to divide boundaries in a better way a
help to extract meaningful shape decompositions. Al
corner and junction features together with the directions
their constituent components often characterize objects
better way than edge fragments or corner and junction
tures alone. Second, many 2-D features occur in situat
of occlusion and they can serve to indicate object conto
even if the contrast is vanishing or null. We refer to the
2-D features as key-points and they must be included in
symbolic representation of objects.

The extraction of 2-D features is more straightforwa
than the corresponding nonmaximum suppression pro
dure for 1-D features. However, no method provides
entire solution to the classification of 2-D features, for e
ample in L-, I -, T-, Y-, and X-junctions. In general-case
methods, key-points are usually defined as strong 2-D
tensity variations, i.e., the signal not only varies in o
direction, but also in other directions. One could extra
key-points by analyzing the first and second derivatives
the direction of modulus channels. Model-based metho
on the contrary, work with a specific corner model lookin
for areas that best match the model. If the classification
trivial with the model-based feature detectors, then the
calization and detection tasks are by no means trivial
combined approach could alleviate these problems, in
the key-points are used to initialize a model-based
proach.
161Optical Engineering, Vol. 37 No. 1, January 1998
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3.3 Edgel Aggregation Algorithm

An independent representation of key-points can help
aggregating local edge evidence to larger, coherent pi
of contour. The method represents the contrast-defined
age features as a collection of meaningful parts, subdivi
at locations of high key-point evidence. Even though t
idea is not new, previous implementations used postp
cessing of binary edge maps to achieve segmenta
rather than using independent representations of 2-D
tures. Key-points have an active role making contours c
verge onto them and reducing problems, especially at bi
cations. The natural relationship between edges and
points can provide a more accurate definition of the ima
features.

We describe a general purpose algorithm that is abl
represent, at different levels of resolution, edges and
lines completely and accurately as well as their connecti
at corners, junctions and other important 2-D features. C
sidering the fact that edge and line operators usually p
duce unconnected pixel maps, the multiresolution edgel
gregation algorithm should also be able to bridge th
small gaps~1 to 2 pixels!. An additional requirement, is
that the the algorithm should be independent of the ed
line operator.

The required data for the multiresolution edgel aggre
tion algorithm consists of those feature maps that mu
resolution edge or line operators produce, i.e., the mu
resolution magnitude, edge, and local orientation ma
Additional maps, such as the multiresolution type class
cation, general edge quality, and key-point maps, are
tional and will be incorporated only if they are supplied

Three major tasks must be addressed in the design
general purpose edgel aggregation algorithm: where
start, how to link, and where to stop. These tasks have t
repeated at every level of resolution in order to obtain
multiresolution representation. The solutions to these iss
are presented next.

3.3.1 Where to start

Linking is a sequential process. Therefore, it is importan
aggregate the significant contours before the weaker o
All edge/line pixels are assigned a start-point value t
reflects their suitability to serve as seeds for the aggrega
process. The ‘‘optimal’’ start-point is defined as the po
which has two neighboring edge pixels of the same ty
~edge/line!, is located in a region with homogeneous loc
orientation, and has a pure 1-D general edge profile. T
means that pixels close to significant 2-D image featu
should not be considered because the local orientatio
not reliable. See Refs. 26 and 3 for a detailed descriptio
the process. The algorithm then picks the current best s
point from a sorted list of start-points. All the start-poin
on and along an established contour are invalidated
eliminated to prevent multiple aggregation of the same c
tour. The start-points can further be separated into edge
line start-points to allow the algorithm to deal with eith
only lines, only edges, or both together.

3.3.2 How to link

If the algorithm is to bridge small gaps in the edge map
traditional 333 pixel neighborhood is not sufficient. On
162 Optical Engineering, Vol. 37 No. 1, January 1998
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must extend the search region to solve this problem. Ho
ever, the search region cannot extend too far because
computations involved increase dramatically. The n
pixel is found by evaluating the pixels contained in a d
rected search region, which extends 2 pixels from the c
rent position. Each directed search region consists of n
contiguous paths. A primary selection among these path
based on simple criteria. The remaining paths are t
ranked according to magnitude strength and orienta
similarity and the best one is retained. Whenever the c
sification map is available~edge or line!, the selection of
the best path depends on the type consistency betwee
path and that of the start-point.3 Finally, the selected path
determines a new position and a new updated linking dir
tion.

3.3.3 Where to stop

Key-points are used as a suitable stop condition for
aggregation process.25 This enables us to divide contour
into meaningful subsegments. The use of key-points a
solves/reduces the problem of finding the correct link
junctions because the contours converge on them.
problem of imperfect localization of image features
treated by using a catch region of 333 pixels around each
key-point. If the edgel aggregation algorithm converg
onto a catch region it may connect the current contour
the key-point. Given the fact that key-point maps are n
always available, additional termination conditions are us
for robust performance. These conditions are when a c
tour segment occludes with an already established cont
occludes with itself, or when there are no more pixels
link.

Figure 1 shows all the component of the multiresoluti
edgel algorithm and how they interact.

3.4 Postprocessing

Considering that we are analyzing polyhedral objects a
want a compact symbolic representation, we would like
obtain the maximum number of long and straight contou
while at the same time keeping the number of curved c
tours and endpoints as low as possible. This will be
main task of the postprocessing stage. The secondary
is to reduce the number of spurious contour segments f
much cleaner representation.

The 1-D and 2-D feature extraction procedures
domain-independent because they do not use any shap
contextual information. This is good for general applic
tions. However, we are dealing with man-made or regu
objects. We now introduce shape information—the strai
contour—for a more customized processing.

The reorganization procedure depends on two m
components: curve partitioning and the definition
straight, curved, and closed contours.

3.4.1 Curve partitioning

We propose to use an iterative split and merge algorit
~Ref. 27, Chap. 4! because of its simple implementatio
speed, and reliable performance even on smoothly cha
ing curves. Given a contour, the algorithm consists of fo
steps:
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1. Construct the line between the contour’s endpoi
and measure the maximum deviationD of the curve
from that line.

2. If the absolute deviation exceeds some thresholdT,
split the curve at that point, and replace the origin
line with two new straight-line approximations be
tween the old points and the new one.

3. Repeat recursively steps 1 and 2 for each new c
tour segment until all the segments have sm
enough deviations.

4. Finally, test consecutive segments to see if they
be merged into a single straight line, without excee
ing the thresholdT on deviation.

The thresholdT need not to be a constant~typically 2 to 3
pixels!, it can also be a functionL(d) of the Euclidean
distanced between the two endpoints of the current su
segment. A variable threshold allows the algorithm to co
sider contours with a given maximum deviation as
straight line if the distance between the endpoints is la
enough. In our case,L is defined as follows3:

L~d!5 H11g log10 d:
1:

d>1
otherwise, ~9!

where the constant 1 sets the lower bound for the tolera
and the parameterg controls its increase, andg is set to 1
by default. The fourth component of the algorithm is t
merging procedure. The algorithm starts with the two s

Fig. 1 Multiresolution edgel aggregation showing the required (solid
line) and optional (dashed line) input for every module of the multi-
resolution edgel algorithm: (a) the input gray-scale image, (b) the
multiresolution operator magnitude map, (c) the multiresolution local
orientation map, (d) the multiresolution edge map, (e) the multireso-
lution general edge quality map, (f) the multiresolution type classifi-
cation map, (g) the multiresolution key-point map, and (h) the result-
ing multiresolution symbolic representation.
-

e

ments that have the largest sum of distances between
endpoints. This guarantees that the algorithm always c
structs straight lines as long as possible.

3.4.2 Curve labeling

For a robust symbolic representation, it is necessary to
rectly classify the contours. We classify contours as clos
curved, and straight.3 A contour is closed if it has the sam
endpoint at both ends. Open contours are classified as e
straight or curved. A contour is straight if its lengthd is
larger than some minimumdl and if the maximum devia-
tion, from the line between its end-points, is smaller th
L(d). The contour is labeled curved if at least one of t
two conditions is not met. Notice that even though a co
tour has a maximum deviation of 0 pixels, it is labele
curved if its length is smaller thandl .

We mentioned that the edge detection threshold sho
be selected according to an estimated level of image n
and not to a hard threshold. The reason for this was
avoid removing ‘‘weak’’ edges that could be part of stro
ger structures. Now, we want to reorganize all contours
endpoints to obtain contours as long and straight as p
sible, and how to remove obviously weak or spurious co
tour segments.

Many ideas have been proposed to reorganize con
segments and to remove weak edges. Most of them rem
clearly significant structures and produce unnecessarily
complete contour representations. A postprocessing pr
dure must clearly satisfy specific requirements~some times
it is not even needed if the contour graph is ‘‘clean
enough!.

The split- and-merge procedure consists of the follow
seven steps:

1. Merge: Suppress all endpoints with two connect
contours and replace the two segments by a sin
one. If the contour is closed, the endpoint is not
moved.

2. Split: A new set of break-points is computed for ea
contour.

3. Prune:Remove weak and curved contour segment
they are not connected to other contours at both en
If a curved contour has an open end and its integra
gradient magnitude is lower than the median gradi
magnitude among all contours at its level of reso
tion, the segment is pruned. Repeat this proced
until there are no more weak and curved contour s
ments with and open end.

4. Merge: Same as step 1.

5. Split: Same as step 2.

6. Merge: Group consecutive curved contours to bu
longer curved contours.

7. MultiMerge: If a contour segment is missing from
one or more levels of resolution, but it appears in tw
or more levels of resolution in the multiresolutio
symbolic representation, create a new contour s
ment in the levels in which the contour is missing

Steps 1 and 2 group smaller straight and curved segm
to longer straight contours. The output is a reorganized
163Optical Engineering, Vol. 37 No. 1, January 1998
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Fig. 2 Components and flow of the postprocessing algorithm: (a) contour graph resulting from the
edgel aggregation algorithm and (b) final contour representation.
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of contour graphs where each contour at every level
resolution is labeled either straight, closed, or curved.
single pixel is removed in these two steps. Step 3 remo
all weak and curved contour segments that have unreli
links. Steps 4 and 5 obtain the longest possible stra
contour segments. Step 6 reduces the number of cont
and endpoints. Step 7 takes advantage of the redun
information of the multiresolution representation and co
plete unconnected contour graphs at certain levels of r
lution.

The reason for applying the merge and split procedu
before pruning the contours is that if the graph conta
several weak and collinear ‘‘curved’’ segments they will
be removed. If these smaller segments are first groupe
longer straight contours they will always remain.3 In addi-
tion, the multimerge step is effective only if a missing ed
is exactly matched in the other levels.

Figure 2 shows the components and flow of the postp
cessing algorithm described.

4 Conclusions and Future Work

A multiresolution feature extraction methodology has be
proposed to efficiently find a symbolic representation
objects using wavelets and multiresolution analysis. T
proposed algorithm is a combination of several power
techniques and uses a large amount of information. The
of a large amount of information helps us to achieve red
dancy, which helps us to obtain high-quality results. T
multiresolution feature extraction algorithm consists of tw
main parts: the multiresolution edge detector and the m
tiresolution edgel aggregation algorithm. The former u
wavelets created using the lifting scheme, reorganizes
wavelet basis using the pyramid representation, and
tracts edges using a wavelet local maxima operator.
latter uses an extension of an edgel aggregation algor
to link contour segments at every level of resolution and
relate segments along different levels of resolution. T
algorithm works for images of any size and for synthe
and real images. Results show that the proposed algor
is robust and reliable under different conditions using b
ineering, Vol. 37 No. 1, January 1998
t
s
t

-

o

e

-

synthetic and real images. The sensitivity of the wave
based edge detector extracts edges in almost any typ
lighting conditions. Small gaps are bridged thanks to
extended directional search mask. The automated noise
tector and postprocessing procedure help to remove n
and spurious edges as well as to recuperate missing e
using the redundancy of the multiresolution representat

Even though good results are obtained, the method is
from being finished. The algorithm does depend on
quality of the edge maps. The extended directional sea
mask and the postprocessing step are unable to ha
highly fragmented and highly clustered edge maps. Res
are unpredictable under these conditions. Adaptive pro
dures for noise removal and multiresolution edge comp
tion seem to be the best options to solve these proble
Our work may also be complemented with segment ste
matching and coplanar grouping to generate a comp
3-D symbolic representation of objects. Even though
worked with only simple polyhedral objects, the propos
algorithm is perfectly adaptable to work with any type
objects.
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